Translate

martes, 27 de agosto de 2013

GRANDES MATEMATICOS DE LA HISTORIA
*CARL FRIEDRICH GAUSS
Johann Carl Friedrich Gauss (Gauß) ( 30 de abril de 1777 - 23 de febrero de 1855 s. XIX), fue un matemático, astrónomo y físico alemán que contribuyó significativamente en muchos campos, incluida la teoría de números, el análisis matemático, la geometría diferencial, la geodesia, el magnetismo y la óptica. Considerado "el príncipe de las matemáticas" y "el matemático más grande desde la antigüedad"
Fue el primero en probar rigurosamente el Teorema Fundamental del Álgebra (disertación para su tesis doctoral en 1799), aunque una prueba casi completa de dicho teorema fue hecha por Jean Le Rond d'Alembert anteriormente.
En 1801 publicó el libro Disquisitiones Aritmeticae, con seis secciones dedicadas a la Teoría de números, dándole a esta rama de las matemáticas una estructura sistematizada. En la última sección del libro expone su tesis doctoral. Ese mismo año predijo la órbita del asteroide Ceres aproximando parámetros por mínimos cuadrados.
En 1823 publica Theoria combinationis observationum erroribus minimis obnoxiae, dedicado a la estadística, concretamente a la distribución normal cuya curva característica, denominada como Campana de Gauss, es muy usada en disciplinas no matemáticas donde los datos son susceptibles de estar afectados por errores sistemáticos y casuales como por ejemplo la psicología diferencial.
Mostró un gran interés en geometría diferencial y su trabajo Disquisitiones generales circa superficies curva publicado en 1828 fue el más reconocido en este campo. En dicha obra expone el famoso teorema egregium. De esta obra se deriva el término curvatura gaussiana.


*ARQUIMEDES
Arquímedes de Siracusa (Griego: Ἀρχιμήδης) (c. 287 a. C. - c. 212 a. C.) fue un matemático, físico, ingeniero, inventor y astrónomo griego.  Arquímedes demostró que el lado del hexágono regular inscrito en un círculo es igual al radio de dicho círculo, así como que el lado del cuadrado circunscrito a un círculo es igual al diámetro de dicho círculo. De la primera proposición dedujo que el perímetro del hexágono inscrito era 3 veces el diámetro de la circunferencia, mientras que de la segunda dedujo que el perímetro del cuadrado circunscrito era 4 veces el diámetro de la circunferencia.
Afirmó, además, que toda línea cerrada envuelta por otra es de menor longitud que ésta, por lo que la circunferencia debía ser mayor que tres diámetros pero menor que cuatro. Por medio de sucesivas inscripciones y circunscripciones de polígonos regulares llegó a determinar el valor aproximado de π como:
Con los rudimentarios medios de los que disponía el sabio griego, el error absoluto que cometió en el cálculo de π resultó ser inferior a una milésima (0,0040 %).
Sin embargo, Arquímedes es más conocido por enunciar el principio que lleva su nombre:
Principio de Arquímedes: todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso de fluido desalojado.

*THALES DE MILETO

Tales de Mileto (en griego Θαλής ο Μιλήσιος) (h. 639 ó 624 a. C.. - h. 547/6 a. C..) fue el iniciador de la indagación racional sobre el universoo. Se le considera el primer filósofo de la historia, y el fundador de la escuela jonia de filosofía, según el testimonio de Aristóteles.
La explicación de Tales: Si la Naturaleza remitía siempre a un principio o arjé cabía preguntarse por si era posible concebir una única realidad o sustancia que pudiera ejercer en ella tanto de origen, sustrato y causa.
Tales argumentaba que era el agua quien desempeñaba dicho papel, y quizás sea la primera explicación significativa del mundo físico sin hacer referencia explícita a lo sobrenatural. Tales afirmaba que el agua es la sustancia universal primaria y que el mundo está animado y lleno de divinidades.
Origen de su pensamiento: Es muy probable que haya sido uno de los primeros hombres que llevaron la geometría al mundo griego, y Aristóteles lo consideraba como el primero de los φυσικόι o "filósofos de la naturaleza". Muchas de estas ideas parecen provenir de su educación egipcia. Igualmente, su idea de que la tierra flota sobre el agua puede haberse desprendido de ciertas ideas cosmogónicas del Oriente próximo.

*EUCLIDES

Euclides (en griego Ευκλείδης, Eukleides) fue un matemático y geómetra griego, que vivió alrededor del año 300 a.C., ~(325 a. C.) - (265 a. C.). Se le conoce como "El Padre de la Geometría"
La geometría de Euclides, además de ser un poderoso instrumento de razonamiento deductivo, ha sido extremadamente útil en muchos campos del conocimiento; por ejemplo, en la física, la astronomía, la química y diversas ingenierías. Desde luego, es muy útil en las matemáticas. Inspirados por la armonía de la presentación de Euclides, en el siglo II se formuló la teoría ptolemaica del Universo, según la cual la Tierra es el centro del Universo, y los planetas, la Luna y el Sol dan vueltas a su alrededor en líneas perfectas, o sea círculos y combinaciones de círculos. Sin embargo, las ideas de Euclides constituyen una considerable abstracción de la realidad. Por ejemplo, supone que un punto no tiene tamaño; que una línea es un conjunto de puntos que no tienen ni ancho ni grueso, solamente longitud; que una superficie no tiene grosor, etcétera. En vista de que el punto, de acuerdo con Euclides, no tiene tamaño, se le asigna una dimensión nula o de cero. Una línea tiene solamente longitud, por lo que adquiere una dimensión igual a uno. Una superficie no tiene espesor, no tiene altura, por lo que tiene dimensión dos: ancho y largo. Finalmente, un cuerpo sólido, como un cubo, tiene dimensión tres: largo, ancho y alto. Euclides intentó resumir todo el saber matemático en su libro Los elementos. La geometría de Euclides fue una obra que perduró sin variaciones hasta el siglo XIX.
De los axiomas de partida, solamente el de las paralelas parecía menos evidente. Diversos autores intentaron sin éxito prescindir de dicho axioma intentándolo colegir del resto de axiomas. Ver Geometría euclidiana.
Finalmente, algunos autores crearon nuevos basándose en invalidar o sustituir el axioma de las paralelas, dando origen a las "geometrías no euclidianas". Dichas geometrías tienen como característica principal que al cambiar el axioma de las paralelas los ángulos de un triángulo ya no suman 180 grados.

*PITÁGORAS

Pitágoras de Samos (aproximadamente 582 a. C. - 507 a. C., en griego: Πυθαγόρας ο Σάμιος) fue un filósofo y matemático griego, famoso sobre todo por el Teorema de Pitágoras, que en realidad pertenece a la escuela pitagórica y no sólo al mismo Pitágoras. Afirmaba que todo es matemáticas, y estudió y clasificó los números.
Los pitagóricos atribuían todos sus descubrimientos a Pitágoras por lo que es difícil determinar con exactitud cuales resultados son obra del maestro y cuales de los discípulos. Los números pentagonales son un ejemplo de números figurados. Entre los descubrimientos que se atribuyen a la escuela de Pitágoras están: Una prueba del teorema de Pitágoras. Si bien los pitagóricos no descubrieron este teorema (ya era conocido y aplicado en Babilonia y la India desde hacía un tiempo considerable), sí fueron los primeros en encontrar una demostración formal del teorema. También demostraron el converso del teorema (si los lados de un triángulo satisfacen la ecuación, entonces el triángulo es recto).


1 comentario:

  1. Podemos encontrar los grandes filosofos matematicos atravez de la historia.

    ResponderEliminar